
Hi! I’m Simon.

(These notes expand a bit more than the actual five minutes lightning
talk.)

Algebraic sum types
in Python

Simon Sapin
PyCon UK, 2013-09-22

1 / 9

I recently joined Mozilla, and I’m not doing as much Python anymore.
I do Rust!

One of Rust’s features that I miss in Python is its enum types.

rust-lang.org

It’s nice!

2 / 9

Let’s take a step back and talk about type theory for a minute.

Assuming you have some “basic” data types, one thing you can do is
compose them into more complex types.

Type theory

int
float
str
NoneType

3 / 9

There are two fundamental ways to compose types. One of them is
the product, which basically means that you take two (or more)
things and put them together.

To do this C and Rust have structs, Rust and Python have tuples, and
Python also has namedtuple, objects with attributes, etc. This is all
well understood.

Composition

Product types: A × B

C, Rust:
struct Point { x: float, y: float }

Python: tuple, namedtuple, objects, …

4 / 9

The other way to compose things is the sum type. This means that
your thing is one of several things, and only one at a time. (E.g. either
a string or None .)

This product and sum for an algebra on types, much like the one you
know on numbers even though these are not numbers at all.
Algebraic types are fun but we don’t have much time :)

Composition

Sum type: A + B

Type algebra:

NoneType = 1
A × 1 = A
bool = 1 + 1 = 2
A + A = A × 2

5 / 9

C’s enum types a special case of sum types where each term is 1 , the
unit type (which only has one value.)

C’s pattern for doing “real” sum types is the tagged union. It’s not
pretty.

C: tagged union

enum ShapeKind { Circle, Rectangle };
struct Shape {
 enum ShapeKind kind;
 union {
 struct {Point center; float radius}
 circle;
 struct {Point tl; Point br}
 rectangle
}};

6 / 9

Rust on the other hand has built-in sum types, and calls them enum .
Note how unlike in a C enum , each variant here can contain stuff.

Quite importantly, Rust also has a match pattern that does pattern
matching, dispatching to different code branches (like C’s
switch ... case), and desconstruction (assigning fields to new local
variables) all at once. This is very pleasant to use.

Rust: enum

enum Shape {
 Circle(Point, float),
 Rectangle(Point, Point)
}

match shape {
 Circle(center, 0) => {...},
 Circle(center, radius) => {...},
 Rectangle(tl, br) => {...},
}

7 / 9

We have a few options in Python, but none of them are quite as nice
and general as Rust’s enum with match .

Dymanic typing (eg. “pass either a string or a list”) only helps when
your variants are represented by different types, while series of elif
isinstance(…): statements are just a pain to write.

Python?

• PEP 435 Enum: like C, not like Rust
• Dynamic typing
• Object oriented: class hierachy,

isinstance() , .type class attr
• Tuples: ('circle', x, y, r)

('rectangle', x1, y1, x2, y2)

8 / 9

The point of this talk is to ask you, dear audience/reader: is there a
better way?

Is there another (better) pattern in current Python? Or is it worth
adding a new match statement in future versions of Python, possibly
with a generalized Enum types?

Can we do better?

Another pattern in current Python?
Adding a match statement?

Discuss :)

Twitter: @SimonSapin
Email: simon@exyr.org

9 / 9

	Algebraic sum types in Python
	rust-lang.org
	Type theory
	Composition
	Composition
	C: tagged union
	Rust: enum
	Python?
	Can we do better?

